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J. Phys. A: Math. Gen. 14 (1981) 383-394. Printed in Great Britain 

Exact solution of the Schrodinger and Klein-Gordon 
equations for generalised Hulthen potentials 

M Znojil 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 17 May 1980 

Abstract. For the class of generalised Hulthkn s-wave potentials 

the exact solution is presented for both the Schrodinger and Klein-Gordon equations. This 
simultaneous solubility represents a new non-perturbative treatment of the kinematical 
relativistic corrections and is based on a non-standard generalisation of the hypergeometric 
function. 

1. Introduction 

The non-relativistic Schrodinger equation is usually considered much simpler than its 
relativistic (Dirac or Klein-Gordon) counterparts. Hence, the approximate non- 
relativistic description is often used even for genuine relativistic binding or scattering 
(pions, quarks, etc, see Quigg and Rosner 1979 and references therein). Apart from the 
difficulties of interpretation connected with the existence of antiparticles etc (Bjorken 
and Drell 1964), the formal reason is that the exact solution is understood to be 
represented by the classical special functions. All Hamiltonians which do not admit 
such a solution are indiscriminately treated by universal perturbation and/or numerical 
methods. In this sense the non-relativistic Schrodinger equation is much better suited 
for modelling because many exactly solvable non-relativistic Hamiltonians Ho exist 
(Newton 1965). 

From the methodological point of view there is a broad gap between the special 
(exactly solvable, usually non-relativistic) and general (realistic, perturbed or relativis- 
tic) Hamiltonians. We suggest that it be bridged using the algebraic method of matrix 
recurrences (Znojil 1980, referred to as I hereafter. See also 0 2.1). In brief, we may 
extend the class of Ho, especially in the relativistic domain, once we admit the use of the 
non-standard special functions. 

For practical purposes some of the new exact solutions of the Schrodinger or 
relativistic equations may be made fully analogous to the old special functions, thus 
representing a ‘minimal sophistication’ of the mathematics. This is the case of the 
generalised s-wave exponential potentials described in I, which may contain an 
arbitrary number of free constants fitting almost any shape of the realistic (local) 
interaction V ( r ) .  
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In this paper we shall extend the results of I and introduce the generalised HulthCn 
s-wave potential 

The corresponding solution of the Schrodinger equation is described in § 2.2 and is 
shown to be a straightforward generalisation of the Gauss hypergeometric function 
2F1(. . .). The quantisation of the non-relativistic bound states is standard (zeros of the 
Jost function) and the numerical test (§ 2.3) confirms both the reliability of the method 
and the economy of the solution. 

There are some descriptive features of the potential VGH which are physically 
satisfactory. 

(i) Near the origin (r - 0), the Coulomb-like behaviour may be attained in the limit 
Z ai+ 1. 

(ii) At intermediate distances, various forms of the Coulomb screening, strong 
interaction potentials etc may be fitted. 

(iii) In the asymptotic region (r >> l), the exponential decrease roughly simulates the 
one-boson exchange mechanism of interaction with the small relative error O(ln r/r) in 
the coordinate r. 

(iv) Some of the old solvable potentials (Hulthen, Eckart, Bargmann) are contained 
in equation (1) as special cases (Newton 1965). 
Nevertheless, the most gratifying feature of V G ~  is its semigroup property 
V$A (r) V$A (r) = Vgz, p" = p + p ' .  A consequence of this is the possibility of solving 
also the relativistic Klein-Gordon equation with the potentials VGH in exactly the same 
way. This is demonstrated in § 3.1. For p 3 2, the generalised solution gF1(. . .) in 
general cannot be expressed in terms of the special functions. It is therefore entirely 
new in the context of relativistic quantum mechanics. Its further aspects are discussed 
in §§ 3.2 and 4 and in the Appendix. 

2. Schrodinger equation 

2.1. The method 

Consider an arbitrary linear homogeneous equation 

The method of solution suggested in I is briefly as follows: 
(a) We specify the initial function IX:).  
(b) We assume that the action of H on IX:) generates the new functions IXT), 

m = 1 , 2 , .  . . , M2 such that 

where B:" are arbitrary parameters. 
(c) The repeated action of H on IX,") is assumed to lead to the other sets of 

functions IX;),  n = 1, 2 ,  . . . , Mk, k = 2, 3, 4, . . . which satisfy the fundamental linear 
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relations 

m = l  m = l  

for n = 1, 2 , .  . . k f k ,  and k = 2, 3 , .  . . . 
(d) The matrices of parameters A;", BZm in equation (4) must be such that the sum 

IY)= IX~)-B~(~/AZ)IX~)+B~(~/AZ)BZ(~/A~)IX~)- . . . ( 5 )  

is convergent. 
It is a direct consequence of the assumptions (a)-(d) that the series (5) satisfies 

equation (2) identically. If equation (2) represents the Schrodinger equation (H = 
Hamiltonian minus energy) then ( 5 )  may describe the scattering or bound states 
provided that it satisfies the proper boundary conditions. 

To illustrate the method and to show that it can lead to non-trivial results, we pick up 
the HulthCn potential ( VgL with p = 1, y1 = 1) and transform the corresponding 
Schrodinger equation 

(6) 
d2 
dr - T x ( r )  + v ~ L  (r)X(r) = -K2X(r) 

into the form (2) where X(r) = (rly) and 

dZ 2 d2 
dr (dr2 

H = - T + K  +a1 exp(-r) - - g l - K 2  (7) 

Further, we choose the function exp(H - Kr) = (rlX: ) as initialisation, and infer that the 
action of H generates the set of exponentials 

(rliU:) = exp[ - ( K  + k - l)r], kfk=1,  k = 1 , 2 , .  . . . (8) 
The fundamental relation (4) will hold with 

A:' = - (k - 1)(2K + k - I),  

C t = K + f A ,  P = K - P ,  

It is not surprising that the sum ( 5 )  coincides with the well-known (un-normalised) 
solution 

B:' 

p = ( K 2  f g1)'", 

ai(a + k - 1)(p + k - l), 

(9) k = 1 , 2 , .  . . . 

X(r) = exp(-Kr) 2F1(~, p, 2~ + 1, a1 exp(-r). (10) 

Its properties may be found in the standard textbooks (e.g. Newton 1965). We only 
mention here that choosing K = + JT or K = - 42 we obtain the two independent 
solutions which may be used to satisfy arbitrary initial or boundary conditions. In the 
special case of the non-relativistic bound states (K' > 0, i.e. K = real), the choice K > 0 
guarantees the correct asymptotic behaviour and the proper quantisation follows from 
the boundary condition in the origin, (Oly) = 0. Thus the real roots K of the transcen- 
dental equation 

Z F I ( % P , ~ K + ~ , ~ I ) = O  (11) 

2 < N < l + J I  (12) p = K - ( K  +g1)1/2 = 1 -N, 

define the bound-state energies. For a l  = 1, the alternative exact formula 
2 

follows from the theory of the Gauss function 2Fl(. . .) (Gradshteyn and Ryzhik 1971). 
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2.2. Exact solution 

The s-wave Schrodinger equation (6) with the generalised HulthCn potential (1) may be 
multiplied by the denominator D ( r )  = 1 ai exp(-y,r) of the potential from the 
left. Of course we assume that it is a non-zero function for all r, i.e. 

Further, we slightly simplify the form of H in equation (2) by the factorisation 

x ( r )  = (rly) exP(-Kr) (14) 
having in mind the asymptotic behaviour of the bound-state solutions for K’ > 0. This 
leads to the operator 

P d2 
1 - ai exp(-yir) - 

i = l  dr2 

y = 2 K f 1 ,  ai K f /Ai, pi =K-/Ai, /Ai = (K2+gj)1’2, i =  1 , 2 , .  . . p  

to be used in the method of § 2.1. 
. . Mk may be composed of exponentials The groups of functions IX:), m = 

P 
eki2.,.iD - - 1 yji, = e:, 

j = 1  
p r ) ,  

(rix$iz. . . ip ) = exp( - e $ i z , , , i  

They are numbered by the composite index m{il, i 2 , .  . . ip}  with the p non-negative 
integers il, i 2 , .  . .ip subjected to the restriction il+i,+ . . . + i p  = k - 1. It is easy to 
show that the action of H (15) on IXF) (16) satisfies the fundamental recurrences (4) 
and (3) when the diagonal matrix A has the elements 

A : ~  = -e:(e: +Y- 1). (17) 

The proper B matrix connects just the two neighbouring indices m = 

(18) 

( i l ,  i 2 , .  . . i,, . . . i p )  and .I: = ( i l ,  i2 ,  . . . il + 1, .  . . i p )  differing in one component: 

B;:“; = a,(e;: +a,)(e;: +p,). 
Due to the diagonality of A,  we may immediately write 
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exp(-ylr)) = ~ F l ( a 1 ,  PI,  y, exp(-ylr)). Some properties of the generalised hyper- 
geometric series (20) are discussed in the Appendix. 

Since we have an estimate 

x [I + +pi + 1 - 2yj - y) /e ; :  + 0( i /k2) ]  (21) 

and (k - l ) y l  s 8;: s (k - l)yp, the sufficient convergence condition for (20) reads 

r E (0, CO). 

This is consistent with the absence (equation (13)) of poles of V(r) on the real axis. 
On the boundary of the convergence region, we may still prove the convergence for 

a broad class of potentials, although the detailed general discussion is complicated by 
the necessity to determine the roots ro of the two transcendental equations 

P 

C ai exp( - yjro) = * 1. 
j=1  

The Coulomb-like potential with ro = 0 deserves special attention due to its physical 
character. Considering only the particular case of ro = 0 with ai > 0, and with the real K ,  

ai and Pi, j = 1, 2 , .  . . p ,  we may replace equation (22) by the more subtle (Raabe) 
criterion and obtain the sufficient condition for absolute convergence 

for the solution (20). We note that (24) with ai > 0 does not admit the singularity O(r-*) 
in the origin (D’(0) > y1/2, cf (13)). 

Of course, the quantisation of the bound states follows again from the boundary 
condition (01 Y )  = 0, i.e. 

;Fl({ai), {Pi) ,  Y, {ai))  = 0. ( 2 5 )  
This merely represents the zeros of the Jost function and generalises formula (11) to 
cover all p 3 1. 

2.3. Numerical test 

The search for the roots of the transcendental equation (25) is a numerical procedure. 
Its precision and computation time may significantly worsen when the convergence is 
not rapid enough, due to the rapid increase in the number of terms in the sum (20) for 
higher summation indices k. 

To verify the practical applicability of our solution 2F1(. . .), p > 1, we have chosen 
the Eckart potential 

which is a non-trivial special case of VGH and still possesses an exact solution in terms of 
the hypergeometric functions. Putting A = 2-  (a- g2E)1’2 and 5 = U E  exp(-r), ,y(r) = 1 1  
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5“(1-[)^4(5) in the Schrodinger equation (6), we obtain the Gauss differential 
equation 

f f = K + h + p ,  p = K + A  -p, 7’=2K+1, = ( K 2 + g l E ) 1 ’ 2  (27) 

with the solution 4(5) = 2Fl(a, P, y,  5). The roots of the boundary condition in the 
origin 

(28)  2 F l h  P, 4 = 0 

determine the eigenvalues. 
Representing now the Eckart potential in the form VgL where we put p = 2 and 

2 
y1= 1, Y2 = 2, a1 = 2aE,  a2 = -aE, 

g1 = g l E  + g2E9 g2 = glE. (29)  

we obtain (25)  as the alternative transcendental equation for the binding energies K .  

Insertion of both forms of the solution ~ ( r )  into the same root-searching subroutine 
leads to the same eigenvalues. Their position (e.g. table 1) was confirmed by an 
independent evaluation with the replacement A + 1 - A .  Thus the test has demonstrated 
the practical applicability and reliability of the Dirichlet series representation (20)  of 
the Schrodinger equation solution. 

Table 1. Eigenvalues of the Eckart potential VE(r), obtained numerically from both forms 
(28) and (25) of the boundary condition (Oiy) = 0. 

a E  K1 K 2  

0.1 0.5921 
0.2 0.1099 1.3225 
0.3 0.6161 1.9873 

For small uE S 0.3, the computer time used is comparable for both representations. 
The resulting precision is no worse in the :F1 case, in spite of the unfavourable 
properties of this particular example. The convergence is hindered since u l  + u2 = 
aE(2 - U E )  >> UE and the same terms occur repeatedly due to the degeneracy 
a2 exp(- y2r )  = - [ul exp(-ylr)l2. For higher u ~ ’ s ,  therefore, the use of our represen- 
tation becomes lengthy and less precise. Only the old representation works on the 
boundary uE = 1 of the convergence region. The finite fourteen-digit precision of the 
computer arithmetic leads even then to the 5% deviation when the numerical root is 
compared with the exact formula 

obtainable by analytic means (cf 8 3.2). 
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3. Klein-Gordon equation 

3.1. The Schrodinger-like formulation 

In the present context the most important property of the stationary Klein-Gordon 
equation (KGE) in the s wave 

[E - W(r)]’x(r) + ZZ2c2(d2/dr2)X(r) = m2c4x(r) (31) 

is the possibility of rewriting in the form of the Schrodinger-like equation (6). In the 
units ZZ = c = 2m = 1 we put E = 4- k 2  where k > 0 for bound states. Another restric- 
tion, that is k 2  < 1, must be imposed to guarantee the the stability of the vacuum. For 
k 2  > 1, the many-body character of the annihilation and the mechanism of its stopping 
(Rafelski et a l  1978) lie beyond the scope of the one-body relativistic equation. Thus 
we may also put k Z  - k 4  = K’ > 0 (K ’  < 1/4) and obtain an equivalence between the 
Klein-Gordon and Schrodinger equations (3 1) and (6), respectively, with the cor- 
respondence 

V(r )  = (1 - 2k2) W(r) - W2(r) (32) 

between the potentials. 
The use of the generalised HulthCn potentials 

W(r) = Aj>O, f A j < l  (33) 
GiAi exp(-rir) 

1 -XT=1 Ai exp(-rjr)’ j = 1  

in the original form (31) of KGE leads to its Schrodinger-like form (6)+(1). For 
i = 1, , . . q, q + 1, . . .2q, 2q + 1,  . . . p, and withp = q(q  + 3)/2, the parameters yi, ai and 
gi in (1) are equal to 

rl, . . . rq, 2 r 1 , .  . . 2rq, rl + r2, . . . rqP1 +rqi 
2A1,. , . 2Aq, -AI , .  . . -Ai ,  -2A1A2,. . . -2Aq-1Aq; (34) 

and 

($-k2)G1,. . . ($-k2)Gq, G1(1-2k2-G1), . . . , Gq(l-2k2-G,),  

(i-k2)(G1+G2)-G1G2,. . . (i-k2)(Gq-i+Gq)-Gq--1Gq, 

respectively. Inserting (34) into (22) we prove that the convergence criterion is 
satisfied. Thus the general solution of KGE may be expressed as the superposition of the 
two generalised hypergeometric series (20) with K = +(k2 - k4)’” and K -  = 
- (k2  - k4)’” respectively. 

The consistent interpretation of the relativistic binding is non-trivial-compare, for 
instance, the detailed discussion of the Klein-Gordon equation in Bjorken and Drell 
(1964) or Rafelski et a l  (1978). In as far as we are interested in the solutions of the 
corresponding differential equation rather than in its interpretation, we shall not go into 
detail here and accept the quantisation rules in full analogy with the non-relativistic 
case: at both infinity (r + CO) and the origin ( r  + 0) we require X(r) + 0. In this way, the 
K -  < 0 will be eliminated as before and the numerical determination of energy E = 
mc2 - k 2  will proceed along the same lines. The possible additional energy dependence 
of the potential parameters will of course be irrelevant in this context. 
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3.2. Example: bound state in the Hulthe'n potential 

In general the practical applications of VGH in both the non-relativistic and relativistic 
regions is connected with the transcendental equation (25). Although the numerical 
test of 9 2.3 has confirmed its suitability, the structure of the solution is less tracsparent. 

The special case of VGH (33) with q = 1 and A = 1 (HulthCn potential VH) has 
provided a good picture of some general features of the non-relativistic spectrum, due 
to the existence of the alternative non-numerical formula (12). Fortunately, its 
relativistic analogue also exists. We shall describe it here in detail. 

It is a consequence of the two prescriptions (29) and (34) that KGE with the potential 
VH becomes formally equivalent to the Schrodinger equation with %he Eckart potential 
(26). With the proper assignment of the potential parameters (ylE = # 1) 

KGE may be further transformed into the Gauss hypergeometric differential equation 
(27). Using the identities valid for the Gauss functions (Gradshteyn and Ryzhik 1971) 
we may write the general solution in the form 

K = (k2-  k4)l12/r, p = (K2+glFJ112, a, P = K + A  * p .  

The standard boundary conditions for r + CO imply C2 = 0.  At the point r = 0, the 
standard techniques fail, due to the strong singularity of the potential with A = 1 : The 
classical particle would fall into the origin. A similar phenomenon exists in non- 
relativistic quantum theory. When we interpret (3  1) as the Schrodinger equation, the 
spectrum ceases to be bounded from below for G > r / 2 ,  the wavefunctions 

x ( r )  - r1'2 sin(const + In r (G2/ r '  -a)'/') + . . . 
oscillate rapidly near the origin. For the weaker singularity, G < r / 2 ,  the quantisation 
of the bound states may be obtained from an additional requirement x ( r )  - r 1 / 2 + s ,  E > 0 
(from the finiteness of the kinetic energy (xITI,y) < CO). Hence we shall treat KGE in the 
same way, and arrive at the quantisation condition for ~ ( r ) ,  equation (36), in the same 
form as in 8 2.3, 

K - A  + 1 - p = -m, m = 0, 1, , , , (37) 

Due to the k-dependence of gl and p (35), equation (37) differs from equation (30) and 
defines the energies E = $ -  k2 as the roots of the sixth-order polynomial. As a 
consequence of the restrictions on the admissible values of G and k in the relativistic 
case, the parametrisation 

G = ( r /2 )  sin 2a,  

k = sin P, P E (0, T/2) (38) 

a E (0, 77-/4) 
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implies 

Then the quantisation condition (37) acquires the trigonometric form 

2rm + r + r cos 2a +sin 2p = [I - (cos 2p - r sin 2a)’11/’. 

v = a: - p + ( ~ / 4 )  E (- ~ 1 4 ,  ~ / 2 ) ,  

(40) 

First, we shall consider the special case r = 1. Introducing the new angular variables 

(41) U = CY + p - T/4 E ( - T/4, T/2), 

we may simplify equation (40) into 

2m + 1 + 2  cos U cos v = (1 - 4  sin2 U cos’ ~ 1 ~ ’ ~ .  (42) 

Since cos U > 0 and cos U > 0 we obtain m < 0. Hence the existence of the very first 
bound state may be possible on the boundary of the a and p domain only. Since m = 0 
is consistent with equation (42) only at cos U = 0, we solve KGE (31) directly for G = 4 
and k = 0 and obtain 

(43) ,y(r) = (1 -exp(-r))l/’(C1 + C, In (exp(r)- I ) ) .  

This ‘zero-energy bound state’ is not in fact the true bound state, in as far as it cannot be 
normalised in the standard way. 

We next fix the characteristics m = p = 0 of the state (43) and permit r # 1. From 
equation (40), we obtain a =ao,  aO=tan-’  r so that this state exists and is shifted 
towards a = a. < ~ / 4  for < 1. It is reasonable to assume now that for a > ao, the 
M + 1 > 1 states ( m  = 0, 1, . . . M )  may exist in general. We easily show from equation 
(40) with p = 0 that the number M +  1 of states may become arbitrarily large for a 
sufficiently broad potential, that is for 

2 sin 2a r<r,= (2M + 1)’ +2(2M + 1) cos 2CY + 1’ (44) 

At the maximal strength of the potential (a  = ~ / 4 ,  sin 2a = 1,  cos 2a = 0), formula (44) 
may be simply compared with its non-relativistic counterpart 

r < rR = 2 / [ ( 2 ~  + 1)  + 11’. (45) 

Thus the last bound state will be lost in the non-relativistic limit whenever the value of 
the constant I’ lies in one of the intervals (1 / (2+4N+2N2) ,  1/(1 + 2 N + 2 N 2 ) ) ,  
N = 0, 1 ,2 ,  , , . . We may summarise this situation as follows: 

(i) The non-relativistic equation with the HulthCn potential (33), q = 1 and A = 1, 
may possess an arbitrary number of the bound states given by equation (47) and 

(cf equation (12)). The corresponding relativistic equation holds only for sufficiently 
weak coupling (G < r/2) .  For potential wells which are ‘too weak’ (r a l), it has no 
bound states at all. 
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(ii) For the fixed potential width r <  1 and coupling G < r / 2 ,  the situation is 
reversed and new purely relativistic bound states may appear. The magnitude of the 
energy 

k = krel = +[2 - l- sin 2 a  - (2m + 1 +cos 2a)Q]1’2, 

Q2 = 4[(2m + 1)’+ 2(2m + 1) cos 2 a  + 11-l- r2> 0 (47) 

follows from equation (40). We note that the antiparticle level band i? = 1 - k 2  remains 
well separated even for (Y = 7r/4 and I?+ 0 since k 2  + (2 - J2 ) /4  < $ for the ground state 
m = 0. This means that the relativistic modification of V(r) (32) and therefore also the 
value of the energy shift k:on-rel - k:el (cf (46)) are always negative. Further, this implies 
that the HulthCn potential remains subcritical (it cannot produce particle condensation) 
when it is kept regular at the origin (G < r /2) .  

4. Summary 

We have obtained closed solutions of the Schrodinger equation for a broad class of the 
generalised HulthCn s wave potentials VGH. They are represented analytically by the 
Dirichlet series (20), which generalises the Gauss hypergeometric function 2F1 and is 
convergent in the large domain of parameters including all complex energies in most 
cases. The practical applicability of the solution is illustrated by the non-trivial 
numerical example. 

The semigroup property of the potentials VG, leads to the simultaneous solubility 
of the corresponding relativistic Klein-Gordon equations. This means that our p > 1 
generalisations gFl of the hypergeometric function iFl 2F1 are an important tool for 
the non-perturbative investigation of the relativistic corrections. Of course, the one- 
body character of our approach leads to the physical (many-body and radiative 
correction) uncertainties. Nevertheless, it may be used as a mathematical model 
estimating the kinematic relativistic effects or confirming the reliability of the highly 
popular non-relativistic descriptions of semi-relativistic systems (e.g. quarks). We have 
demonstrated this in detail in the case of the singular HulthCn potential. We have 
shown that even the Coulomb-like singularity may be strong enough to produce the 
significant relativistic corrections. Their non-perturbative character is proven, and 
shown to generate the new bound states of purely relativistic origin. 

When compared with the sum of exponentials in I, the potentials under considera- 
tion, V G ~ ,  comprise the physically interesting special cases of the screened Coulomb 
interaction V(r) - l / r ,  r << 1. Moreover, they admit also a singularity of order l / r 2  at 
the origin (compare the example of § §  2.3 and 3.2 with A = 1). In view of the fact that 
this is merely the singularity of the centrifugal term 1(1+ l ) / r 2  fon 1 > 0, we may use our 
exact solution for the systematic approximations even in the higher partial waves. t 

t One of the possibilities is to replace the potential V,(r) in the radial Schrodinger or Klein-Gordon equation 
by zero or any simple (solvable) potential V,,,(r) for all r>Ro>>O, and to fit the function u ( l ,  r ) =  
V,(r) + / ( 1+  I)/?, with an arbitrary precision E,, by VGH(r) in the finite interval r E (0, Ro). The exact solution 
of the approximate equation will then be obtained by matching the logarithmic derivatives at Ro. In principle, 
the modification of the potentials ought to be removed by the limiting transition Ro+ a), E ,  + 0. In practice, 
we believe that for any realistic interaction V,(r) and any partial wave IS 0, the most efficient estimates of the 
sufficient finite value of the cutoff Ro < 00 are more likely to he based on the fit V G H ( ~ )  - U(/, r) achieved with 
the fixed E ,  > 0 and minimal p ,  complemented by the first-order perturbation corrections. 
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Appendix: Properties of the generalised hypergeometric series 

Instead of equation (14) let us write 

and write the Schrodinger equation ( 6 )  with the potential (1) in the form (2). Then the 
operator H will be obtained in the form (1.5) again, with the only modification 

- 
ai +Gj =ai +yj, Pi + Pi = Pi + yit i == 1 , 2 , .  . . p .  

Hence the alternative form of the solution (20) reads 

(the same normalisation (col Y )  = 1). This is an example of the generalisation of Kumar 
transformation formulae, which holds for the Gauss functionls zF1 = iF1.  

Formally, z F ~  is a function of p variables x i  = ai exp(-yir). For the degenerate case 
ai = a, P i  = P ,  i E G, it may be related to the old Gauss function by the obvious identity 

which follows directly from the definition (20). Putting p I= 2 we see that :F1 is a 
non-trivial generalisation of ZF1 to two variables and does not coincide with any of the 
Appe!: 'unctions Fl, Fz, F3 or F4 (Gradshteyn and Ryzhik 1971). 

N e ~ i  let us consider the limiting transition a, + 0, g,a, + G, f 0 in the potential (1) for 
t indices j = j l ,  i = 1, 2, . . , t, t S p .  Since the limit of equation (19) has the form 

the corresponding coniluent form of the generalised hypergeometric series is 
given by the series (20) with the substitution a,, exp(-y,,r) + - G,, exp(-y,,r) and 
(a,( + E ' ) ( P , ,  +XI)-* 1 in the numerator for all rI = j i ,  i = 1, 2, . . . t. This substitution 
improves the convergence, so that the new confluent series qF:" will exist for any Gji. It 
should be noted that the fully confluent form is closely related to the generalised 
Bessel function (I). 

Formula (20) is very compact but the original representat ion ( 5 )  may sometimes be 
useful in the computation. We may return to the simple upper index by introducing the 
ordering m = 1 , 2 , .  . . , 

' " - \  p-l 3 - i p )  + ( k  + p  -;;: - i p P l  ) +  . . .  +(i ; )+l  

-2). 
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The mapping (k, m)e{i ,}  is one-to-one, with the recurrent inversion 

kj + p i  - 3  - y  
ii =max y, ) + I s m i  

mi-1 = mi - 

k j - l  = ki - ij 1, pi-1 = p i -  1 s  1 

for j = p ,  p - 1, , . . 2 and with the initialisation m, = m, k, = k,  p ,  = p .  The algorithmic 
form of equation (A6) is also available. To perform the step m + m + 1 for m <Mk, we 
must 

(i) put s = il and t = 1, 
(ii) if s # 0 then put il = 0 and t = 2, 
(iii) find n such that 2 s n S P ,  i, # 0 and all ii = 0 for t sj s n - 1, 
(iv) put i, = i, - 1 and 
As a consequence of our ordering, we arrive at the matrices -Bk(l/Ak+l) = L k  = 

= s + 1. 

& ( p )  with the simple block structure 

(A71 
L m ,  L ( p - 1 ) ,  0, . . .  . . .  

Lk(p)= 0, Lzo(p), L z ( P - 1 ) ,  0, . . .  
. . .  L . . .  . . .  0, L : ( p ) ,  Lk(p-1)  

where LE(p) is a diagonal part of Lk(p) given by equation (19) with j = p .  This may be 
checked by using the explicit formulae (19) and the definitions 

m = m(il ,  iz, . . . , ii, . . . i p - l ) s M k ( p )  

m: = m ( i l ,  i z , .  . . , i j + l , .  . . , i p - l ) = m +  (k+;:;-ip)+ . . ,  

They specify the positions of the non-zero elements of the sparse matrix Lk(p) so that 
an efficient evaluation of the sum ( 5 )  may alternatively be based on the recurrent 
character of equation (A7) with respect to p .  
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